Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 11(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35453804

RESUMEN

In the south of western Siberia (Russia), there are many unique and unexplored soda, saline, and freshwater lakes. In this study, the results are presented on microbial diversity, its metabolic potential, and their relation with a set of geochemical parameters for a hypersaline lake ecosystem in the Novosibirsk region (Oblast). The metagenomic approach used in this work allowed us to determine the composition and structure of a floating microbial community, the upper layer of silt, and the strata of bottom sediments in a natural saline lake via two bioinformatic approaches, whose results are in good agreement with each other. In the floating microbial community and in the upper layers of the bottom sediment, bacteria of the Proteobacteria (Gammaproteobacteria), Cyanobacteria, and Bacteroidetes phyla were found to predominate. The lower layers were dominated by Proteobacteria (mainly Deltaproteobacteria), Gemmatimonadetes, Firmicutes, and Archaea. Metabolic pathways were reconstructed to investigate the metabolic potential of the microbial communities and other hypothetical roles of the microbial communities in the biogeochemical cycle. Relations between different taxa of microorganisms were identified, as was their potential role in biogeochemical transformations of C, N, and S in a comparative structural analysis that included various ecological niches.

2.
Data Brief ; 34: 106709, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33490329

RESUMEN

This is data on the microbial diversity in the floating cyanobacterial community and sediment samples from the lake Solenoe (Novosibirsk region, Russia) obtained by metagenomic methods. Such a detailed data of the microbial diversity of the Novosibirsk oblast lake ecosystem was carried out for the first time. The purpose of our work was to reveal microbial taxonomic diversity and abundance, metabolic pathways and new enzyme findings the studied lake ecosystem using the next-generation sequencing (NGS) technology and metagenomic analysis. The data was obtained using metagenomics DNA whole genome sequencing (WGS) on Illumina NextSeq and NovaSeq. The raw sequence data used for analysis is available in NCBI under the Sequence Read Archive (SRA) with the BioProjects and SRA accession numbers: PRJNA493912 (SRR7943696), PRJNA493952 (SRR7943839) and PRJNA661775 (SRR12601635, SRR12601634, SRR12601633) corresponding to floating cyanobacterial community and sediment layers samples, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...